Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Xucheng Fu, ${ }^{\text {a,b }}$ Chenggang Wang ${ }^{\mathrm{c} *}$ and Mingtian Li ${ }^{\mathrm{c}}$

${ }^{\text {a }}$ Department of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China, ${ }^{\mathbf{b}}$ Chemistry and Biology Department, West Anhui University, Liu an, Anhui 237000, People's Republic of China, and ${ }^{\mathrm{c}}$ Department of chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China

Correspondence e-mail:
wangcg23@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.001 \AA$
R factor $=0.020$
$w R$ factor $=0.054$
Data-to-parameter ratio $=14.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved
\qquad

catena-Poly[[[diaquamanganese(II)]- μ-oxalato] monohydrate]

In the title compound, $\left\{\left[\mathrm{Mn}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}$, the octahedrally coordinated Mn atom, lying on a twofold rotation axis, is bonded to four carboxyl O atoms from oxalate groups and two O atoms from two water molecules. By means of the bridging oxalate ligand, the title compound exhibits a onedimensional chain structure. The crystal packing is stabilized by hydrogen bonds of the type $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ (oxalate).

Comment

The oxalate dianion is well known as a bridging ligand and its coordination compounds have potential magnetic behavior (Verdaguer, 2001). Many of its bi-, tri-, tetranuclear, one-, twoand three-dimensional network compounds have been reported (Huizing et al., 1977; Gleizes et al., 1992; Sanada et al., 1998).

(I)

We report here the crystal structure of one such compound, catena-poly[[[diaquamanganese(II)]- μ-oxalato] monohydrate], (I), composed of one-dimensional chains stabilized by hydrogen-bonding interactions. Each $\mathrm{Mn}^{\mathrm{II}}$ atom has a distorted octahedral coordination comprising four O atoms ($\mathrm{O} 1, \mathrm{O} 1 a, \mathrm{O} 3 b$ and $\mathrm{O} 3 d$) from oxalate groups and two O atoms from two water molecules. The $\mathrm{O} 2 a-\mathrm{Mn} 1-\mathrm{O} 2$ angle is $84.71(5)^{\circ}$. The other important angles $\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 3 b, \mathrm{O} 2 a-$ $\mathrm{Mn} 1-\mathrm{O} 1, \mathrm{O} 2 a-\mathrm{Mn} 1-\mathrm{O} 1 a$ and $\mathrm{O} 1 a-\mathrm{Mn} 1-\mathrm{O} 3 b$ are

Figure 1
A view of the molecular structure of (I), showing labelling of 50% probability ellipsoids [Symmetry codes: (a) $\frac{1}{2}-x, 1-y, z ;(b)-x, 1-y, z$; (d) $\frac{1}{2}+x, y, z$.]

Received 27 May 2005 Accepted 13 June 2005 Online 17 June 2005
90.57 (3), 92.09 (3), 103.84 (4) and 75.04 (3) ${ }^{\circ}$, respectively. The crystal packing involves $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ (oxalate) hydrogen bonds, resulting in a stable layered structure (Table 2 and Fig. 2).

Experimental

$\mathrm{MnCO}_{3}(0.115 \mathrm{~g}, 1 \mathrm{mmol})$ was added to a solution of oxalic acid $(0.216 \mathrm{~g}, 2 \mathrm{mmol})$ in water $(15 \mathrm{ml})$ and the reaction mixture was stirred for 1 h at 323 K . After filtration, the pale-yellow solution was allowed to stand at room temperature. Pale-yellow needle-like crystals were formed by slow evaporation of the solvent at room temperature over approximately 15 d .

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=197.01$
Orthorhombic, Pcca
$a=9.7660$ (9) A
$b=6.6155$ (6) \AA
$c=10.5192(10) \AA$
$V=679.61(11) \AA^{3}$
$Z=4$
$D_{x}=1.926 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.474, T_{\text {max }}=0.654$
3698 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.054$
$S=1.07$
824 reflections
57 parameters
H atoms treated by a mixture of independent and constrained refinement

Mo $K \alpha$ radiation
Cell parameters from 2752 reflections
$\theta=3.1-28.2^{\circ}$
$\mu=1.93 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Block, pale yellow
$0.40 \times 0.36 \times 0.22 \mathrm{~mm}$

$$
\begin{aligned}
& 824 \text { independent reflections } \\
& 781 \text { reflections with } I>2 \sigma(I) \\
& R_{\mathrm{int}}=0.017 \\
& \theta_{\max }=28.3^{\circ} \\
& h=-13 \rightarrow 11 \\
& k=-8 \rightarrow 6 \\
& l=-12 \rightarrow 14
\end{aligned}
$$

$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0344 P)^{2}\right.$
$+0.0879 P]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.005$
$\Delta \rho_{\text {max }}=0.41 \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.27 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0119 (16)

Table 1
Selected bond lengths (\AA).

$\mathrm{Mn} 1-\mathrm{O} 2$	$2.1561(9)$	$\mathrm{Mn} 1-\mathrm{O} 3$	$2.2080(8)$
$\mathrm{Mn} 1-\mathrm{O} 1$	$2.1862(8)$		

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O}^{\mathrm{i}}$	$0.83(2)$	$2.03(2)$	$2.8234(12)$	$160(3)$
O2 $^{\mathrm{H}}-\mathrm{H} 2 B \cdots \mathrm{O} 4^{\mathrm{i}}$	$0.83(2)$	$1.87(2)$	$2.6913(12)$	$171(2)$
O4-H4A $\cdots \mathrm{O} 1$	$0.79(2)$	$2.01(2)$	$2.7554(11)$	$159(2)$

[^0]

Figure 2
A view, approximately along the b axis, of the layered structure of the title compound. Hydrogen bonds are shown as dashed lines.

The H atoms of the water molecules were located in difference maps and were refined with restrained $\mathrm{O}-\mathrm{H}$ distances.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors thank the Education Office of Anhui Province, People's Republic of China, for research grant No. 200161.

References

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2000). SMART, SAINT and SADABS (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Gleizes, A., Julve, M., Verdaguer, M., Real, J. A., Fus, J. \& Solans, X. (1992). J. Chem. Soc. Dalton Trans. pp. 3209-3212.
Huizing, A., Hal, H. A. M., Kwestroo, W., Langereis, C. \& Loosdregt, P. C. (1977). Mater. Res. Bull. 12, 605-611.

Sanada, T., Suzuki, T., Yoshida, T. \& Kaizaki, S. (1998). Inorg. Chem. 37, 47124716.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Verdaguer, M. (2001). Polyhedron, 20, 1115-1118.

[^0]: Symmetry codes: (i) $-x+\frac{1}{2}, y, z+\frac{1}{2}$; (ii) $x, y-1, z$.

