metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xucheng Fu,^{a,b} Chenggang Wang^c* and Mingtian Li^c

^aDepartment of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China, ^bChemistry and Biology Department, West Anhui University, Liu an, Anhui 237000, People's Republic of China, and ^cDepartment of chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China

Correspondence e-mail: wangcg23@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 292 KMean $\sigma(\text{C}-\text{C}) = 0.001 \text{ Å}$ R factor = 0.020 wR factor = 0.054 Data-to-parameter ratio = 14.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[[diaquamanganese(II)]-μ-oxalato] monohydrate]

In the title compound, $\{[Mn(C_2O_4)(H_2O)_2]\cdot H_2O\}_n$, the octahedrally coordinated Mn atom, lying on a twofold rotation axis, is bonded to four carboxyl O atoms from oxalate groups and two O atoms from two water molecules. By means of the bridging oxalate ligand, the title compound exhibits a onedimensional chain structure. The crystal packing is stabilized by hydrogen bonds of the type $O-H\cdots O(\text{oxalate})$.

Comment

The oxalate dianion is well known as a bridging ligand and its coordination compounds have potential magnetic behavior (Verdaguer, 2001). Many of its bi-, tri-, tetranuclear, one-, twoand three-dimensional network compounds have been reported (Huizing *et al.*, 1977; Gleizes *et al.*, 1992; Sanada *et al.*, 1998).

We report here the crystal structure of one such compound, catena-poly[[[diaquamanganese(II)]- μ -oxalato] monohydrate], (I), composed of one-dimensional chains stabilized by hydrogen-bonding interactions. Each Mn^{II} atom has a distorted octahedral coordination comprising four O atoms (O1, O1a, O3b and O3d) from oxalate groups and two O atoms from two water molecules. The O2a-Mn1-O2 angle is 84.71 (5)°. The other important angles O1-Mn1-O3b, O2a-Mn1-O1, O2a-Mn1-O1a and O1a-Mn1-O3b are

Figure 1

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved A view of the molecular structure of (I), showing labelling of 50% probability ellipsoids [Symmetry codes: $(a)^{\frac{1}{2}} - x, 1 - y, z; (b) - x, 1 - y, z;$ $(d)^{\frac{1}{2}} + x, y, z.$] Received 27 May 2005 Accepted 13 June 2005 Online 17 June 2005 90.57 (3), 92.09 (3), 103.84 (4) and 75.04 (3)°, respectively. The crystal packing involves $O-H \cdots O(oxalate)$ hydrogen bonds. resulting in a stable layered structure (Table 2 and Fig. 2).

Experimental

MnCO₃ (0.115 g, 1 mmol) was added to a solution of oxalic acid (0.216 g, 2 mmol) in water (15 ml) and the reaction mixture was stirred for 1 h at 323 K. After filtration, the pale-vellow solution was allowed to stand at room temperature. Pale-vellow needle-like crvstals were formed by slow evaporation of the solvent at room temperature over approximately 15 d.

Mo $K\alpha$ radiation

reflections

 $\theta = 3.1 - 28.2^{\circ}$ $\mu = 1.93~\mathrm{mm}^{-1}$

T = 292 (2) K

 $R_{\rm int}=0.017$

 $\theta_{\rm max} = 28.3^{\circ}$

 $h = -13 \rightarrow 11$

 $k = -8 \rightarrow 6$

 $l = -12 \rightarrow 14$

Block, pale yellow

 $0.40 \times 0.36 \times 0.22 \text{ mm}$

824 independent reflections 781 reflections with $I > 2\sigma(I)$

SHELXL97

Cell parameters from 2752

Crystal data

 $[Mn(C_2O_4)(H_2O)_2] \cdot H_2O$ $M_{\rm u} = 197.01$ Orthorhombic, Pcca a = 9.7660 (9) Åb = 6.6155 (6) Å c = 10.5192 (10) Å $V = 679.61 (11) \text{ Å}^3$ Z = 4 $D_x = 1.926 \text{ Mg m}^{-3}$

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\min} = 0.474, T_{\max} = 0.654$ 3698 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0344P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.020$	+ 0.0879P]
$wR(F^2) = 0.054$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.07	$(\Delta/\sigma)_{\rm max} = 0.005$
824 reflections	$\Delta \rho_{\rm max} = 0.41 \text{ e} \text{ Å}^{-3}$
57 parameters	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	Extinction correction: SHELXL92
independent and constrained	Extinction coefficient: 0.0119 (16)
refinement	

Table 1

Selected bond lengths (Å).

N 1 02	0.15(1.(0))	N 1 02	2 2000 (0)
Mn1-02	2.1561 (9)	Mn1-03	2.2080 (8)
Mn1-O1	2.1862 (8)		

Table 2

Hydrogen-bond	geometry	(Å,	°).
---------------	----------	-----	-----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O2-H2A\cdots O3^{i}$	0.83 (2)	2.03 (2)	2.8234 (12)	160 (3)
$O2-H2B\cdots O4^{i}$	0.83 (2)	1.87 (2)	2.6913 (12)	171 (2)
$O4-H4A\cdots O1$	0.79 (2)	2.01 (2)	2.7554 (11)	159 (2)

Symmetry codes: (i) $-x + \frac{1}{2}$, $y, z + \frac{1}{2}$; (ii) x, y - 1, z.

Figure 2

A view, approximately along the b axis, of the layered structure of the title compound. Hydrogen bonds are shown as dashed lines.

The H atoms of the water molecules were located in difference maps and were refined with restrained O-H distances.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors thank the Education Office of Anhui Province, People's Republic of China, for research grant No. 200161.

References

- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2000). SMART, SAINT and SADABS (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Gleizes, A., Julve, M., Verdaguer, M., Real, J. A., Fus, J. & Solans, X. (1992). J. Chem. Soc. Dalton Trans. pp. 3209-3212.
- Huizing, A., Hal, H. A. M., Kwestroo, W., Langereis, C. & Loosdregt, P. C. (1977). Mater. Res. Bull. 12, 605-611.
- Sanada, T., Suzuki, T., Yoshida, T. & Kaizaki, S. (1998). Inorg. Chem. 37, 4712-4716.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Verdaguer, M. (2001). Polyhedron, 20, 1115-1118.